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The eigenvalue problem arising in the one-dimensional normal mode analysis of 
fixed boundary magnetohydrodynamic stability is solved by a finite element method. 
Piecewise constant, discontinuous basis functions are used for two components of the 
displacement vector because this permits an accurate representation of the nearly 
divergence-free property of the modes being treated. In spite of the simple basis functions, 
the accuracy is greatly improved compared to that obtained with piecewise linear, 
continuous basis functions. Important features of the spectrum, such as infinitely 
degenerated eigenvalues, accumulation points, and continua are well represented by the 
method. The method used is equally well applicable to the free boundary stability 
problem. 

I. INTRODUCTION 

The finite element method has recently been proposed by Ohta et al. [l] as a tool 
for the analysis of magnetohydrodynamic stability of a current-carrying plasma. 
Since then, several authors [2, 3,4] have applied the method to infinitely long, 
axisymmetric plasmas. The problem to be solved in this case is a one-dimensional, 
linear, self-adjoint eigenvalue problem of second order for a displacement vector E, 
tiith three components & , & , 5, . It has been shown analytically that the full 
spectrum of eigenvalues may contain continuous parts [5-131, accumulation 
points [12, 131 or distinct infinitely degenerate eigenvalues [12, 131. So it is not 
astonishing that the standard choices of basis functions [l-4], e.g., piecewise linear 
or cubic functions for all components of e, may not be the best. In fact, the choice 
of linear basis functions destroys the degeneracy of the Alfven-oscillations in a 
homogeneous currentless plasma cylinder [4]. The corresponding numerical results 
have a Bessel-function-like shape, which is attributable to the discretization and 
not to physics. The same discretization errors make it impossible to find the correct 
shape of the unstable modes in a fixed boundary Tokomak, although the eigenvalue 
of the most unstable mode can be obtained [2]. 
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In a very recent report [14] a finite element method has been applied to a two- 
dimensional problem, in which the eigenvalues and eigenfunctions of the most 
unstable kink modes have been successfully determined. It has not been shown that 
this method is capable of determining the growth rates of weakly unstable modes. 
The difficulty lies in the fact that the expression of the potential energy contains 
positive definitive terms which in fact are always very small. If these terms are not 
correctly represented by the finite elements, they overcompensate the destabilizing 
term, thereby introducing errors. 

We shall show that these defects of the method disappear in one-dimensional 
problems if a more appropriate choice of the basis functions is made. Since the 
variational form of the eigenvalue problem contains only first derivatives of 4,. [2], 
discontinuous basis functions are admissible for the components &, and 4, . Our 
choice then is determined by a physical argument. Because unstable modes are 
nearly incompressible, the displacement e should be approximated within a func- 
tion class where incompressibility can well be represented. So we are led to a 
special combination of piecewise linear and piecewise constant basis functions. It is 
noteworthy that despite the use of simpler functions, the convergence properties 
are improved. 

II. THE PHYSICAL PROBLEM 

Consider a small, time and space dependent displacement 5 of a perfectly 
conducting fluid in magnetohydrostatic equilibrium. The equation of motion for 5 
is given by [15] 

p $ = F(S) = %-VP + YPV-Q + P x Q> x B + P.x B) x Q, (1) 

where Q = V x (5 x B). Here p(r), p(r), and B(r) denote equilibrium quantities, 
the mass density, the pressure, and the magnetic field, respectively. y is the adia- 
baticity index. The equilibrium quantities satisfy the relation 

(V x B) x B = VP. (2) 

A current way to attack the stability problem in an axisymmetric infinitely long 
plasma is to look for normal mode solutions to Eq. (1) of the form 

qr) = Q.) eiw+me+kz), (3) 

constrained by the boundary conditions 

p(O) tiite, t,(R) = 0, (4) 
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where R is the radius of a bounding impenetrable wall. &, & , I, are the 
components of 5 in cylindrical coordinates. Under these assumptions the equation 
of motion, Eq. (I), may be brought & the variational form of Newcomb [16], i.e., 
the stationary point formulation [17] of the eigenvalue problem 

A (5,) +) = k2r2 l+ m2 I(krB, + *&I + + (krB, - *l&J + 1’ 

+ [(krB, + m&J2 - 2& $ (r&j] 5, 

and 

S denotes the variation of a functional. 

(6) 

(7) 

In Eq. (5), g, , i& , it, can be taken real without loss of generality [16]. Note that 
the left- and right-hand sides of Eq. (5) are proportional to the kinetic and the 
potential energy of the plasma, respectively. From Eq. (5) it is self-evident that the 
operator F(S) in Eq. (1) is self-adjoint at least in the one-dimensional case, and is 
shown for the general case by Greene and Johnson [ 181. Hence the eigenfrequencies 
w2 are real. The plasma is unstable when negative eigenvalues o2 exist. Note further 
that Eq. (5) contains only derivatives on g, . 

The energy principle, Eq. (5), was the starting point of many analytical papers on 
MHD-stability in the last 15 years. In most cases the problem was significantly 
simplified by determining only the minimum of the potential energy rather than the 
full solution of Eq. (5). This method (so called SW-method) will give the correct 
answer for marginal stability (o = 0), but cannot give correct growth rates as can 
be seen by the following considerations. 

In the 6 W-method the second and third terms in the potential energy integral in 
Eq. (5) can be minimized to zero because the first term does not depend on gB and 
5, . Hence minimum potential energy implies incompressibility (second term: 



FINITE ELEMENT METHOD IN MHD 287 

div 5 = 0) of the unstable modes. Since the adiabaticity index influences the motion, 
Eq. (I), only in the combination y div 5, growth rates calculated with the 6 W- 
method do not depend on y. On the other hand it is known [2, 191 that growth rates 
may strongly depend on y. Therefore the 6 W-method is not appropriate when 
exact knowledge of the growth rates is required. Bernstein et al. [20] were already 
aware of this fact when originally formulating their energy principle in 1958. 

However, the 6 W-method gives us a hint on how to choose our basis functions 
when attacking the full stationary point problem, Eq. (5), with the method of 
finite elements. The form of Eq. (5) implies that div 5 * 0 and 5 - &, w 0 for 
weakly unstable displacements, since these two quantities are exactly zero in the 
marginal case (w = 0). Therefore, it should be possible to represent div 5 = 0 and 
5 - &, within the function class chosen. However, by comparison of numerical 
and analytic results, we found it sufficient that only div F = 0 be correctly represen- 
ted. To see why, we reexamine the spectrum of a plasma cylinder of constant 
density in a homogeneous longitudinal magnetic field B, [4]. The equation of 
motion specialized to this case reads: 

-w2pS, = (Bz2 + yp) V,(V * P) - ikBp2(V,L - ikQ 

Here 1 denotes vectors perpendicular to the magnetic field. p, p, B, are constant. 
Particular solutions of Eq. (lo), the so-called Alfven-oscillations, can be found by 
setting 

tz = 0, (11) 

so that 
v*g=o, (kaBzz - 02p) t1 = 0. (12) 

The eigenvalue 
co2 = k2Bz2/p (13) 

is infinitely degenerate, since every 5,. satisfying the boundary condition, Eq. (4), 
determines with Eqs. (11) and (12) a nontrivial &, . 

Imagine now a plasma with an additional small B. (e.g., Tokomak). It can be 
shown [2, 21, 221 that, for special values of BB , the Alfven-oscillations go unstable. 
For a good discrete approximation of these instabilities we require the degenerate 
eigenvalue of the solution without B. to be exactly represented by the finite element 
method. With the method described in [4] we found one-third of the eigensolutions 
to be badly represented Alfven-modes. Hence the discrete description of Eq. (10) 
should be chosen in such a way that one-third of the eigenmodes may be purely 
torsional and incompressible as required by Eqs. (11) and (12). 
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III. DISCRETIZATION 

Let us carry out the variation in Eq. (5): 

4% 5) - wW%, 9 = 0. (14) 

Then the problem to be solved may be formulated as follows. Find a scalar w2 and 
a “sufficiently regular” vector 5 satisfying the boundary conditions, Eq. (4), for 
which Eq. (14) holds whatever “sufficiently regular” 65 satisfying Eq. (4) is taken. 

In order to get rid of the apparent singularities induced in Eq. (5) by the 
cylindrical geometry we define a new displacement vector [23] e by 

All components of e are real, because 5, , it8 , itz may be real. With Eq. (15) we 
exclude the case m = 0 from our further considerations. This case could be treated 
with the transformation used in [4]. Let us further define 

ci(St, t) = a(U-l SE, U-Q 
&if, E) = b(U-1 se, u-q. 

(16) 

Then the problem to be solved is given in Eq. (14), if everywhere the hat is inserted: 

qst, Q - fB”@g g) = 0. (17) 

The essential structure of the bilinear forms a and ri is the same: they only contain 
first derivatives d/dr on [, and g, , respectively. Hence “sufficiently regular” means 
that e belongs to H = H’(0, R) x L,(O, R) x L2(0, R), i.e., l, belongs to the 
Sobolev space H1(O, R) and that c2 and lS are square integrable. 

For the numerical treatment of Eq. (17) we need a finite-dimensional (dimen- 
sion N) subspace V of “sufficiently regular” functions g with the property explained 
in the preceding section: V should contain N/3 linearly independent functions e 
satisfying the two relations 

^ 
V.5=B.U-‘.~=~+e2+d=o, {, = 0 (18) 

in every point of the interval 0 < r < R. More accurately, V can be defined in the 
following way. 

Let V, be a finite-dimensional subspace of H1(O, R) of type “linite element” 
constrained by the boundary conditions, Eq. (4). Let V, and V, be two finite- 
dimensional subspaces of L,(O, R) and having the properties: For all e1 E V1 there 
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exists & E V, and .& E V, such that Eq. (18) holds. V is then defined by 

v = v, x v, x v, . (19) 

Let us first examine the subspace of “sufficiently regular” functions used in [l-4]. 
Assume the interval 0 < r < R to be devided in iz subintervals. A piecewise linear 
(i.e., linear in every subinterval), continuous function is determined by 3n + 1 
nodal values: n + 1 nodal values for each component of e minus the two deter- 
mined by the boundary condition, Eq. (4). Hence the dimension of the space is 
N = 3n + 1. The number of constraints given by Eq. (18) is also 3n + 1, since the 
n + 1 nodal values of & and the n pieces of the piecewise linear function 
&W) + & h ave to be identically zero. Consequently no piecewise linear, 
continuous function E satisfying Eq. (18) exists. Almost the same is true for 
piecewise cubic, continuous functions with continuous first derivatives. In this case, 
the dimension is N = 6n + 4 and the number of constraints is 6n + 2. At most two 
linearly independent functions may satisfy Eq. (18). 

From all possible subspaces V, which contain N/3 linearly independent func- 
tions satisfying Eq. (18) we choose the simplest one: continuous piecewise linear [i 
and piecewise constant [, and c, . In this space of dimension 3n - 1 Eq. (18) yields 
2n constraints. Hence n - 1 well-represented Alfven-modes may exist. The basis 
of V is given by 

0 0 ei 0 , i = 0, l,..., n; (ci+&)v i,,+l,), i = 0, L..., n - 1; (20) 

where ei are triangular functions as defined in [4] and 

for ri < r < ri+l , 
elsewhere, O<i<n-1. (21) 

Here a mesh 0 = r,, < rl < .a. < r, = R is assumed. The approximation of a dis- 
placement g in the space V reads 

where the nodal parameters xii, xi+(“‘), ~2~~“) are the values of l1 at r = ri and 
of $, and & at r = ri+(r/z) 3 (ri + ri+3/2. The insertion of Eq. (22) for g and 
Eq. (20) for Se in Eq. (17) yields together with Eq. (4) an algebraic eigenvalue 
problem of dimension 3n - 1. The integrals necessary to be carried out in Eq. (5) 
may be performed by using a Simpson-routine. 
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IV. APPLICATIONS 

The Homogeneous Currentless Plasma Cylinder 

First we apply our method to the simple situation described by Eq. (10). With a 
mesh of n intervals, we find the eigenvalue of the Alfven-branch, Eq. (13), to be 
(n - I)-fold degenerate in contrast to [4]. Because of the degeneracy, no spurious 
physical structure of the associated eigenvectors as in [4] was observed. These two 
results were our principal goal when introducing the space V according to Eqs. (19) 
and (20). 

There was a second class of badly described eigensolutions in our previous work, 
the slow waves, whose eigenvalues are analytically given by 

l/2 
% 

2 = $ (R2k2 + r&)(1 + ?) [ 1 - (1 - 4S” R2k2 
(1 + ,2)2 R2k2 + Y;.~ ) I ’ (23) 

where s2 = yp/Bz2 and ym,, is the oath zero of dJ,(x)/dx. With increasing 01, i.e., 
increasing ym,ol , am2 decreases and tends toward the accumulation point wa2 = 

ufL 
9 

5 
,-.A -D-o-.-.---.-.-.-.-.-.-.-.-e-o 

xi3 - 

52 l <. _._.-.-.-.-.-.-.-.-.-.-.--.-.-.-~ 

I 11 11 “1 “1 
0 2 I 6 6 10 12 U 16 16 20 t ” 

ANALYTIC 

FIG. 1. Numerically calculated spectrum of the slow wave branch in the homogeneous 
currentless plasma cylinder as a function of the number of intervals. At the right-hand aide the 
first 19 eigenvalues of the exact analytic spectrum are plotted. The wavenumbers are m = 1, 
k = -0.5. 
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ypkz/p(l + ~2). The frequency band occupied by this class of solutions may be 
very narrow relative to the value of the accumulation point, which is, in addition, 
the lowest frequency of the whole spectrum. Figure 1 shows the numerical solution 
to Eq. (23) as a function of the number n of intervals. The parameters used are 
m= l,k=OS, and s2 = l/12 (plasma with p = 0.1 and y = 5/3). 

The modes corresponding to the spectrum of Fig. 1 are well described; once more 
in contrast to [4]. As an example, we compare in Fig. 2 the numerical solutions for 

FIG. 2. Analytic (solid line) and numerical (points) solutions to the component & of the slow 
wave branch. The corresponding eigenvalues are q* - WG = 2.5 * lo-’ and wga - ~4 = 
5.8 . lo-‘, respectively. The boundary conditions have been used for the innermost point. 

the modes corresponding to up2 and oS2 with the analytic solutions J1(yIS4r/R) and 
J1(yISsr/R), respectively. In [4] the mode associated with w22 was badly described, 
whereas the higher modes could not even be identified. Note that these results can 
only be obtained in the space V as specified by Eq. (20), whereas the Alfven-class 
would be degenerate even with linear, continuous fz , since tz(r) = 0 for this class. 

The Inhomogeneous Currentless Plasma Cylinder (Continuous Spectra) 

For several years the continuous spectra of ideal MHD and their associated 
singular eigenmodes have been discussed in the literature [5-131. As a test, here 
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we apply our numerical method to a simple plasma model, which exhibits the two 
continua possible in a general screw pinch. The model is characterized by 

B, = const, BB = 0, p = const, and p = p,,[l - E(P/P)], where O<E<~. 
(24) 

Equation (10) still holds for this plasma. Let us eliminate tB and 5, from Eq. (10). 
We then find [19] that 

d b,t(r) b,(r) 1 d 
& [ N(r) ; -& (“A] + b‘4(r) t-7 = 0, (25) 

where 
bA(r) = p(r) o.3 - k2Bz2, 

b(r) = p(r) w2(yp + Bz2) - k2B,2yp, w-9 
N(r) = p’(r) w4 - [k2 + (m’/r’)] b,(r). 

Equation (25) has solutions with logarithmic singularities at points rA and rs , if, 
somewhere in the interval 0 < r < R, bA(rA) = 0 or bs(rs) = 0. The equation is of 
Fuchs’ type in the neighborhood of such a point. On the other hand, it can be 
shown [13] that N(r) = 0 does not give rise to singular solutions. Note 
that bA(r) = 0 yields the dispersion relation for the Alfven-class in the limiting 
case of constant density (C = 0). Similarly, b,(r) = 0 and E = 0 yield the accumula- 
tion point wm2 of the slow waves. Further, by expressing t0 and t, in Eq. (10) in 
terms oft?, it can be shown, that fe exhibits a singularity I/(r - rA) at the points 
bA(rA) = 0 and 5, in turn a singularity l/(r - rs) at the points bs(r,) = 0. 

At first glance, one might be puzzled by the existence of singular normal modes. 
But remember that we are calculating Fourier transforms, Eq. (3), of physical 
quantities and that a Fourier transform of a well-behaved function may be a 
distribution, e.g., 6(x - w) is the transform of exp(ixt). In fact, these singular 
normal modes with divergent JI 5 I2 rdr are not meaningless, if they are associated 
with a continuous spectrum, which allows well-behaved square-integrable wave- 
packets to form. Such continua do exist, since every point, where bA(r) = 0 or 
b,(r) = 0, gives rise to a singular solution, which satisfies the boundary condition 
[8, 241. The two continua are given by 

. k”B2 mm f < w2 < max k2Bz2 
O<rtR p(r) Oir<R p(r) 

(Alfven) (27) 

and 
k”YP 

O%-?R p(r)( 1 + 9) 

k2w 
G Co2 G O%:R p(r)(l + s2) (slow wave). P-9 

So, the inhomogeneous density distribution spreads the degenerate eigenvalues 
of the Alfven-waves and the accumulation point of the slow waves to form continua. 
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Having been successful in the numerical approximation of these two special points 
in the spectrum of the plasma with homogeneous density, we wondered how con- 
tinua and singular modes would be approximated by the finite element method. A 
reason why we are looking at these singular modes is the fact that localized regular 
unstable Suydam-modes, as they appear in a diffuse pinch with current flow, behave 
quite similarly. Naturally, the maximum number of modes associated with a 
“continuum” cannot exceed the number of linearly independent vectors with the 
characteristics of the wave-class in question. This upper bound is approximately 
given by the number of mesh-points used. In our model, we find n - 1 Alfven- 
modes and n - nd - 1 slow modes, where nd denotes the number of slow modes 
associated with discrete eigenvalues. First we show in Fig. 3 how the “singularity” 
of an Alfven-mode grows, when the number n of intervals is increased. The density 
parameter E, Eq. (24) is chosen to be 0.1. The modes are normalized numerically by 

CR 1 5 I2 r dr = 1. 
Jo 

(2% 

FIG. 3. “Singular” Alfven eigenmodes in the inhomogeneous currentless plasma cylinder 
with 5, 10,2O, and 40 intervals. Only the dominant component & is given. rA denotes the analytic- 
ally determined position of the singularity. 
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The components [, = 5, and [, = it, being much smaller than the component 
cz = (5, + im s&r, Fig. 3 shows only the component t2 . The l/(r - rA) behavior 
of the mode can clearly be seen. Its maximum amplitude increases (oc@) and its 
half-width decreases (al/n) with increasing n since no norm for the analytic 
solution exists: 

f oR I 50 I2 r dr x lR (,. J rA)2 rdr= co. (30) 

The singular point rA is defined by the condition b,.,(r,J = 0 using the numerical 
solution to w and Eq. (26) for b, . The point ra lies systematically near the grid 
point to its right. This phenomenon seems to be inherent in our numerical method 
as can be seen from Fig. 4. Here all Alfven-modes possible in an equidistant mesh 
with n intervals are shown. Each mode is characterized by its frequency scaled 
with OJ,,~ = k2Bz2/p, and the place r, where the mode is “singular.” Numerically the 
singular point cannot exactly be determined. It lies somewhere between the two 
grid points, which exhibit the most “singular” behavior. The error-bars in Fig. 4 

!&AL 
KL 

I 

.05 

o= 

l- 

.05 

o- 

3 I ” 1 

FIG. 4. Numerically detected “continuous” spectrum of the Alfven branch for a density 
profile with E = 0.1. The numbers of intervals used are 5, 10, 20, and 40, respectively. 
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make this uncertainty visible. The solid line represents the analytic solution to 
bA(T,j) = 0. 

From Figs. 3 and 4, we conclude that a numerical spectrum may be regarded as 
continuous in a certain frequency band, if 

1” 
2” 

3” 

the associated normalized modes have “singularities”; 

the number of modes in a fixed frequency interval increases with increasing 
number of mesh points; 
the polygon defined by the mesh points nearest to the “singularities” and the 
associated frequencies w2 of the modes converges to a smooth curve. 

As a further demonstration (Fig. 5), we calculate the spectrum of the slow waves. 
With increasing inhomogeneity, i.e., increasing E, the. accumulation point opens to 
a continuum which eventually covers the discrete eigenvalues. The solid line 
represents the analytic upper limit, Eq. (28), of the continuum. 

- s. . . . 

i 0 " lo5 12 103 12 ' E 

ANALYTIC 

FIG. 5. The spectrum of the slow waves in an inhomogeneous currentless plasma cylinder 
with varying density profile E. The wavenumbers are m = 1 and k = -0.5. The solid line re- 
presents the analytic limit between the discrete spectrum (upper part) and the continuous spectrum 
(lower part). At the left-hand side the analytic and numerical spectra are given for E = 0. 

A simple Screw-Pinch Model 

Finally, we apply our method to an incompressible plasma (r = co) of constant 
density p lying in a constant longitudinal field B, and carrying a longitudinal, 
constant current. The pressure p satisfies the pressure balance, Eq. (2). The sta- 
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bility theory of such a plasma has been given by Shafranov [25] for m 3 1. Takeda 
et al. [2] have tested their finite element method with this model and have found 
that there might be an error inherent in the numerical formulation. Yet, taking a 
large number of mesh-points, they were successful in calculating the growth rates 
of the most unstable modes. We shall show that the discrete space V, Eqs. (19) and 
(20) should be chosen rather than the space chosen by Takeda et al. [2], if good 
accuracy is desired. Further we shall show that the unstable modes are well approxi- 
mated within a low-dimensional space V, whereas it is almost impossible to approxi- 
mate them within the space chosen by Takeda et al. [2]. 

First we quote Shafranov’s result for the component 5, of an unstable mode 

[, = const [F (p + 1) J,,[kr(pz - l)‘i2] - k(p2 - 1)112 J,-r[/~r(l*~ - l)““]/. 

(31) 

Here p = 2k2T/q(k2T2 - w’~/B,~), T = 1 - m/q, and q = kRB,/B,(R). The boun- 
dary condition, Eq. (4), is satisfied for values p0 , which determine the growth rates 
of the modes 

--co2 = (Bz2k2/p)[(2+,q) - ~‘1. (32) 

Figure 6 now shows the results for the growth rates (m = 2, k = -0.2) obtained 
by Takeda’s and our methods. In both cases, we used an equidistant mesh of 20 
intervals. With all linear and continuous basis functions a single unstable mode 
can be found, whereas in space V there are more than ten. The growth rates of the 

q 
1.9 1.95 2 2.05 2 

FIG. 6. Growth rates versus q of an incompressible screw-pinch carrying a homogeneous 
current. The solid lines represent the six most unstable mode pairs as obtained analytically from 
(24). The corresponding numerical results are indicated by points. At the left-hand side Takeda’s 
method was used. 
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six most unstable modes (strictly speaking, modepairs) are drawn. They correspond 
to the following six pairs of I-lo-values: -25.19, 26.19; -41.60, 42.59; -73.49, 
74.48; -89.31, 90.30; - 105.09, 106.09; -120.86, 121.85. The solid lines represent 
the analytic solution, Eq. (32). In Fig. 7, then, the analytic and the numerical 
solutions to the mode form are compared. Once more, our elements and 20 intervals 
have been used. Figures 6 and 7 demonstrate the good accuracy obtained with the 
finite element method satisfying, Eq. (18). From Fig. 6 one concludes that the 
error inherent in the numerical formulation of Takeda et al. [2] is caused by the 
violation of Eq. (18). 

FIG. 7. Analytic (solid line) and numerical (points) solutions of the radial component & 
and the two dominant unstable modes at q = 1.98. 

V. CONCLUSION 

We have proposed a new class of very simple basis functions for the finite 
element approximation of the one-dimensional normal mode MHD-equations. It 
has been shown that within this function class certain important features of the 
fixed boundary MHD-problem are exactly or at least intelligibly described by the 
discrete system. The proposed basis functions are appropriate for extremely local 
instabilities [26] in complicated equilibrium conditions. They allow the calculation 
of singular eigenmodes having a continuous spectrum (Section IV) and they even 
describe correctly the eigenvalues and eigenfunctions of the slow waves (Section IV), 
i.e., a class of solutions to Eq. (10) with discrete eigenvalues in an extremely narrow 
frequency band, which are descending toward an accumulation point [4]. Finally, 
we showed that the instabilities of a screw-pinch with fixed boundary can be 
calculated with high accuracy even using few mesh-points. The method can equally 
well be applied to free boundary problems [27]. 

Originally, the choice of the new basis functions was motivated by our desire to 
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describe the instabilities of a screw-pinch more accurately. Afterward, we found 
them to be much more universal. So we believe that they could be useful in other 
branches of physics and engineering as well. We do not intend to give criteria for 
their applicability, but we would like to give the following hint: If the variational 
form of your finite element problem at hand admits a discontinuous basis, try it. 
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